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Abstract. Prüfer’s spectral algorithm is applied to the classical analogue of Schrödinger’s
equation. The discrete spectrum is interpreted as a bifurcation phenomenon caused by two
simultaneous classical motions: rotation and squeezing. The energy eigenvalues coincide with
the bifurcation parameters for the classical orbits.

1. Introduction

One of the known curiosities of the one-dimensional Schrödinger equation is its reducibility
to the first-order differential equation of Riccati. Given the eigenvalue problem for
Schr̈odinger’s wavepacketψ(x):

−1

2

d2

dx2
ψ(x)+ [V (x)− E]ψ(x) = 0 (1)

(wherem = h̄ = 1), the formal substitution

ψ(x) = eφ(x) (2)

leads to the classical Riccati equation forf (x) = φ′(x):

f ′(x)+ f (x)2 = 2[V (x)− E]. (3)

Despite its apparent simplicity, (3) is one of the non-trivial and persistently returning
problems in mathematical physics. In fact, even the field equations of general relativity
might be viewed as an ‘analogue’ of the Riccati equation (see e.g. [1]). An obvious idea
would be to replace completely the spectral problem (1) by its first-order equivalent (3).
The difficulties, though, are formidable. In the first place, the ansatz (2) is impractical if
ψ(x) is a real sign changing function. Moreover, (3) has a tendency to create singularities
of f (x), which appear even forV (x) = constant, and correspond to the nodal points of
ψ(x)[V (x) ≡ V0 ⇒ f (x) = −k tan(kx), wherek = √

2(E − V0)]. The subtler ansatz of
Aharonov and Au [2] takes care only of a part of this difficulty.

A different chapter in these attempts was opened by the angular analogues of the Riccati
equation (3) studied by Prüfer [3], Milne [4], Drukarev [5] and Francetti [6]. Yet their works
appeared at the wrong time (or in the wrong place?) and did not receive the attention which
they deserved. The methods of Prüfer and Milne [3, 4] were soon overshadowed by the
(less precise) WKB [7]. Drukarev and Francetti, apparently, have formulated their equations
just to facilitate the calculation of the phase shifts (which they did, but the achievement
later faded together with the whole ‘phase shift trend’). As a result, the multiple forms of
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the Riccati equation remain a kind of sophisticated curiosity, basically known but seldom
applied. Notable exceptions are the techniques of evaluating the number of energy levels
for one-dimensional Schrödinger’s operator [8–11], developed in the classical works of
Calogero [12, 13]. Yet the capacities of the method to determine the energy spectra are
far from exhausted. Our purpose here is to complete the story, by studying the exact
numerical consequences of the angular algorithms [3–6]. We shall show that their numerical
integration is, most likely, one of the most powerful approximate methods to determine the
eigenvalues of one-dimensional (or spherical) spectral problems, which might reduce the
traditional perturbation calculus, at least for one-dimensional eigenvalue problems, into a
kind of museum piece. What is no less interesting is that the method suggests a new concept
of the spectrum, which might exceed the limits of the linear theory.

2. The classical model of Schr̈odinger’s equation

Curiously, the meaning of the algorithm is best seen by forgetting completely about the
quantum mechanical sense of Schrödinger’s equation and sticking to its classical equivalent.
This point of view, though seldom applied, has some notable traditions (see e.g. discussions
in the 1970s [14], the works on the shooting method, discussions by Coleman [15] and by
Ashtekar [16]). Its most provocative expression was the description of the Saturn rings as
the band spectrum of Schrödinger’s operator [17].

To perceive the classical sense of (1) denote the variablex by t and call it time; put
alsoq = ψ(t), p = ψ ′(t). Equation (1) then becomes

dq

dt
= p

dp

dt
= 2[V (t)− E]q. (4)

Note, that (4) coincides with the canonical equations for the pair of classical variables
q, p defined by a time-dependent Hamiltonian

H(t) = p2

2
+ [E − V (t)]q2 (5)

representing the classical oscillator with a time-dependent quadratic potentialV (q, t) =
[E − V (t)]q2. The classical phase space trajectory of (4), (5):

q(t) =
∥∥∥∥ q(t)p(t)

∥∥∥∥ (t ∈ R) (6)

‘paints’ a detailed image of Schrödinger’s wavefunctionψ(x) and its first derivativeψ ′(x).
This fact has been decisive in representing the spectral bands of Schrödinger’s operator as
the stability bands of a classical system (the Saturn rings! [17]). It is as useful in analysing
the point spectra.

3. The bifurcations

Assume for simplicity that none ofE, V (t) is positive, andV (t) vanishes outside of a
finite interval [a, b] ∈ R(V (t) = 0 for t < a and t > b). The equations (4)–(6) thus
describe a classical point moving under the influence of a constant repulsive potential
Eq2, corrected by an attractive term−V (t)q2. For E < 0, the typical trajectory tends
to ±∞ as t → ±∞ (for large |t | the repulsive force dominates, driving the classical
point to infinity). Occasionally, however, a curious dynamical phenomenon occurs; some
trajectories, emerging from the phase space origin(q = p = 0) at t = −∞, by a
rare coincidence, acquire a momentum sufficient to return asymptotically to the origin,
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against the repulsive forces. This phenomenon, extremally unstable, represents precisely
the eigenvectors of (1) [ψ(x) → 0 asx → ±∞], i.e. the most stable forms of quantum
motion. The effect looks like a classical game of skill, where the ‘goal’ is to collocate the
material point at the repulsion centre (see works on the shooting method [18]). To explain
its bifurcation mechanism some geometry elements on the phase planeP are useful.

Due to the linearity of (4)–(5) the phase vectorq(t) at anyt ∈ R depends linearly on
the initial vectorq(a) for any a ∈ R, i.e.

q(t) = u(t, a)q(a) (7)

where the 2× 2 simplectic real matrixu(t, a) is called thetransferenceor evolution matrix.
Equations (4) translate themselves easily into the first order matrix equation foru(t, a):

du

dt
= 3(t)u(t, a) (8)

where

3(t) =
∥∥∥∥ 0 1

2[V (t)− E] 0

∥∥∥∥ . (9)

Mathematically, the matrix equation (8)–(9) is neither easier nor more difficult to solve
than the original Schrödinger equation (1). Yet it leads to geometric pictures which help to
solve the spectral problem (1).

Consider first of all the region outside the potential well,� = (−∞, a) ∪ (b,+∞),
whereV (t) ≡ 0. The generator3(t) in � is constant:

3(t) ≡ 3 =
∥∥∥∥ 0 1

2|E| 0

∥∥∥∥ for t 6 a or t > b (10)

leading to the explicit solutions

q(t) =
{

e3(t−a)q(a) for t 6 a

e3(t−b)q(b) for t > b.
(11)

Note that3 fulfils

32 = 2|E|1 (12)

and so it has two eigenvaluesλ± = ±√
2|E| and eigenvectorse±:

eigenvalues eigenvectors

λ+ = +
√

2|E| e+ =
∥∥∥∥ 1

+√
2|E|

∥∥∥∥
λ− = −

√
2|E| e− =

∥∥∥∥ 1
−√

2|E|
∥∥∥∥ . (13)

Henceforth, fort ∈ � (i.e. in absence ofV (t)) the motion on the phase planeP
preserves the directionse± producing a continuous squeezing: the directione+ expands
while e− exponentially shrinks ast → +∞ (inversely fort → −∞). In the interval [a, b]
this squeezing is corrected by the rotation generated byV (t). (The squeezing is typically
induced by the Hamiltonians of repulsive oscillators, while the attractive ones generate the
phase space rotations.)

The phase trajectory (6)–(7), in general, diverges in both+∞ and −∞. However,
exceptions exist. If the initial phase vectorq(a) is proportional toe+, then in agreement
with (11) q(t) vanishes as exp[(t − a)√2|E|] for t → −∞. In turn, if q(b) is proportional
to e−, then q(t) vanishes as exp[−(t − b)

√
2|E|] for t → +∞. A numberE < 0 is
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an eigenvalueof the Schr̈odinger operator in (1) iff there exists a non-trivial trajectory
vanishingon both extremest → −∞ and t → +∞. This can happen if and only if the
evolution betweent = a and t = b bringse+ into a vector proportional toe−, i.e.

u(b, a)e+ = constant× e−. (14)

To monitor the phenomenon, consider the integral trajectories of (4)–(5) for different
values ofE < 0 (or alternatively, for different amplitudes ofV (t)). Let I+, I−, −I+,
−I− be the radial12-lines determined bye+, e−,−e+,−e− and letP+ andP− denote two
open 1

2-planes limited by±I− containingI+ and −I+, respectively (see figure 1). In the
absence ofV (t), P+ and P− are evolution-invariant; ast → +∞, all the trajectories in
P+ escape to infinity tending asymptotically to theI+-axis while all the trajectories inP−

tend to−I+. Consider now the trajectory which departs fromq(−∞) = 0 passing through
q(a) = e+(E). If V ≡ 0, q(t) = exp[(t−a)√2|E|]e+ (i.e. our trajectory escapes to infinity
exactly along theI+-axis). If |V (t)| is non-zero but small in [a, b], the escape alongI+ (due
to the squeezing/expansion) is corrected by−V (t)q2 which generates a clockwise rotation in
P. Yet once the rotation dies out att > b, the squeezing takes over and drives the trajectory
back again toI+ as t → +∞. If |V (t)| is stronger (or alternatively, if|E| is weaker) the
trajectory will deviate more fromI+ and return to it more slowly (figure 1). Finally, for
sufficiently small|E| (or sufficiently strong|V |), the rotation caused byV (t) will bring q(b)
to I− (see figure 1). Instead of returning toI+, the phase point will fall down right to the
origin along the (shrinking) directionI−, drawing a (normalized) eigenvector of (1). For|E|

Figure 1. The metamorphosis of the classical trajectory (4)–(5) illustrates a wider concept of the
spectrum, not necessarily restricted to the linear operators. We have takenE = − 1

2 andV (t)
in the form of a ‘cosinusoidal well’,V (t) = −λ cost (λ > 0) for |t | 6 π/2, andV (t) ≡ 0 for
|t | > π/2. As λ grows, the deformation due to the rotating term−V (t)q2 expands clockwise
around the phase space origin, crossing the ‘shrinking axis’I−(E) several times. At each new
intersection a bifurcation occurs, producing a new closed orbit interpretable as an eigenvector of
the Schr̈odinger equation (1). The analogous trajectory transformations would occur for a fixed
λ > 0 and variableE.
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Figure 2. As q(t) draws the phase trajectory (figure 1),q(t) reproduces the wavefunction.
Above, three cases of wavefunctions of figure 1: (i) forE = E0 (the energy of the ground state)
the trajectory calculated as the prolongation of the left vanishing cue ata = −π/2 achieves
a smooth union with the (algebraically determined) right cue atb = +π/2; (ii) the analogous
trajectory determined forE < E0 fails to fit smoothly the ‘right cue’. The failure produces
the defect angle0 between the numerical solution and the ‘algebraic cue’; (iii) an analogous
phenomenon forE > E0. In both cases (ii), (iii) the defect angle0 causes a quick divergence
of q(t). The same phenomenon occurs for unlimited wells; the only difference is that the cues
are not exactly exponential but are given by the Riccati ansatz (2)–(3) (see appendix).

still smaller,q(b) will cross toP− and the trajectory will alter its asymptotic behaviour: it
will tend now to−I+ ast → +∞. For |E| further decreasing (or|V | increasing),q(b) will
circulate onP crossing subsequently−I−, I−,−I−, I−, . . .. Every such event will produce
a closed trajectory (an eigenvector!), coinciding with an abrupt change of the asymptotic
type. The eigenvalues of the energy operator are thus interpretable asbifurcation values
(i.e. the values ofE for which the classical orbits produce bifurcations). An idea arises that
the discrete spectrum of (1) could be simplydefined as a bifurcation phenomenoncaused by
an ‘antagonity’ between two different types of motion. Such a definition would not require
linear spaces, and so could be extended to the non-linear operators (see the discussions in
[19]).

What is no less interesting, thebifurcation valuescan be determined by arather simple
algorithm, independent of the traditional perturbation methods.

4. The angular Riccati equations

Since the vector norms in (14) are irrelevant, (14) can be conveniently written in terms of
an angular coordinate. Following Pr̈ufer [3], we introduce

q = ρ cosα p = ρ sinα. (15)
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The canonical equations become

ρ̇ cosα − α̇ρ sinα = ρ sinα (16)

ρ̇ sinα + α̇ρ cosα = 2[V (t)− E]ρ cosα (17)

whereρ̇ and α̇ mean the time derivatives. Curiously, the equation for the angular variable
separates. Multiplying (16) by− sinα, (17) by cosα (or vice versa) and adding one gets
the first-order differential equation forα alone:

α̇ = 2[V (t)− E] cos2 α − sin2 α (18)

and simultaneously

ρ̇/ρ = [V (t)− E + 1
2] sin 2α. (19)

The equation (18) was first derived by Prüfer [3], then by Drukarev [5] and Franchetti
[6]. Its link to the original Ricatti idea is immediate. In fact, (18) implies

d

dt
tanα + tan2 α = 2[V (t)− E]. (20)

The advantages of (18) over the traditional Riccati equation (3), however, are that: (i)
equation (18) can be solved for arbitraryαs without leading to singularities; (ii) it offers
a clear geometric idea of the spectral condition, and (iii) it leads to an easy numerical
algorithm. Indeed, notice that the phase vectorse± define the angles

α±(E) = ± arctan
√

2|E| (21)

δ(E) = α+(E)− α−(E) = 2 arctan
√

2|E|. (22)

In agreement with (11), the trajectory tends to zero in−∞ iff α(a) = α+ + kπ , and it
tends to zero in+∞ iff α(b) = α− +mπ . The trajectory tends to zero for botht → ±∞
iff the time evolution (18) converts the initial angleα(a) = α+ into α(b) = α− ± nπ .
Thus, to check whether a numberE < 0 is an energy eigenvalue it is sufficient to solve the
differential equation (18) withE fixed and with the initial conditionα(a) = α+(E), finding
α(b) = α(b,E). Whenever the total angular change1α = α(a)− α(b) in [a, b] fulfils

1α = δ(E)+ nπ n = 0, 1, 2, . . . (23)

E belongs to the discrete spectrum. A convenient form of (23) involves thespectral defect
angle defined as a difference between thedesired angleα−(E) and theachieved angle
α(b,E):

0(E) = α−(E)− α(b,E) = 1α − δ(E). (24)

The condition (23) then tells

0(E) = nπ n = 0, 1, 2, . . . . (25)

An immediate generalization of the conditions (23)–(25) is obtained forV (t) constant
but not necessarily vanishing outside(a, b):

V (t) =
{
V (a) for t 6 a

V (b) for t > b.
(26)

The motion (4)–(6) then has two different constant generators3(a) and3(b) for t 6 a

and t > b and the formulae (23)–(25) hold after substituting|V (a) − E| or |V (b) − E|
instead of|E| in the expression (21) forα+ andα−, respectively.

Observe that (15) is not the only way to separate the angular part of (4). TheP-plane
is a simplectic space without a natural measure of distances and angles. Henceforth, instead
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of introducing the polar variable (15) straightforwardly, one might as well introduce new
canonical coordinatesq ′, p′, and only after define the angular variable onq ′, p′ plane. Some
profits of this freedom were explored by Calogero [12]; here let us notice only the plausible
form of the spectral condition if the new angular variable is introduced by

q = κρ cosγ

p = κ−1ρ sinγ (27)

whereκ = (2|E|)−1/4. The motion equations then read

γ̇ =
√

2|E| cos 2γ +
√

2/|E|V (t) cos2 γ (28)

ρ̇/ρ =
(√

2|E| + V (t)
√

|E|/2
)

sin 2γ (29)

and the limiting angles are independent ofE(γ± = ±π
4 ). The spectral condition becomes

1γ = (n+ 1
2)π (30)

in a visible reconciliation between the oscillator spectrum and the Sommerfeld quantization
conditions.

5. The numerical algorithm

The importance of the angular variables, in principle, has been known for a long time [3–
6, 12, 13, 20]. Thedefect angleequivalent to (24) was introduced by Calogero, to evaluate
the number of the energy levels for the one-dimensional and radial Schrödinger eigenproblem
[13]. Yet, the efficiency of the method to determine the exact eigenvalues somehow escaped
attention (perhaps due to a general fascination with the perturbative methods!). The first
reason why (18) is so easily applicable is:

Theorem 1.For any bounded, piece-wise continuousV (t) with a compact support in
[a, b], 0(E) is a strictly increasing function ofE for E < min{V (a), V (b)}.

The proof is deduced from two observations. (i) Ifα(t) and α′(t) are two solutions
of (18) with α(a) < α′(a) then α(b) < α′(b) (indeed, otherwise there would be a point
c ∈ [a, b] with α(c) = α′(c) contradicting the uniqueness of the solutions of (18)); (ii) if
α1(t) andα2(t) are solutions of two equations of form (18) with two different parameters
E = E1 andE = E2, respectively, andE1 > E2, thenα1(a) = α2(a) ⇒ α1(b) < α2(b)

(the proof involves only the standard comparison theorem for equation (18); see e.g. [21],
p 394). The observations (i) and (ii) imply now thatα(b,E) for an angular trajectory
starting inα(a) = α+(E) is a monotonically decreasing function ofE, and the proof is
completed by noticing thatα−(E) is increasing.

As an illustration, we have used (25) to determine the energy levels for the truncated
one-dimensional oscillator potential (see also [22]):

V (x) =
{

1
2ω

2x2 for |x| 6 a

1
2ω

2a2 for |x| > a.
(31)

The limiting angles areα± = ± arctan
√
w2a2 − 2E. We have determined the angular

function 0(E), 0 < E < V (a), for w = 1, a = 2 anda = 4, by integrating numerically
the angular equation (18) (see figure 3). It yields the two energy levels for the oscillator
truncated ata = 2, and eight energy levels for the oscillator truncated ata = 4, all calculated
with accuracy up to 10−10. Curiously, the obtained eigenvalues are very close to the first
two and eight levels of the exact oscillator, respectively,En = n+ 1

2 (indeed, even the last
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Figure 3. The defect angle0(E) = α− − α(a,E) for two cases of truncated oscillators: (a)
b = −a = 2 and (b) b = −a = 4. The intersections of the ‘stepping’ functions0(E) with the
horizontal lines0 = nπ give the eigenvalues of the Schrödinger problem.

eigenvalues of the truncated potential (31) differ very little from the orthodoxE1 = 1.5,
andE7 = 7.5). Compared with the Ritz method, the basic advantage of our algorithm is its
essential simplicity (no need to waste skills inventing an adequate class of test functions). A
notable advantage (and this is the second reason why (18) is so easily applicable) is that the
spectral function0(E) is unstableand changes very quickly when crossing the sequence of
critical values0 = nπ(n = 1, 2, . . .) (see figure 3). Thus, even a very small change ofE

in the vicinity of an eigenvalue, translates into a visible effect in0, significantly improving
the accuracy. This ‘smashing error effect’ was apparently overlooked when the angular
algorithms were formulated [3–6]. It is explained by the fact that the energy eigenvalues
correspond to the bifurcations of the orbits and the final pointα(b) deflects very fast when
E crosses the bifurcation value (compare Calogero [23], p 274). In the limit asb = +∞,
α(b,E) would be discontinuous and0(E) would be an exact step function!

6. The ‘1
2 eigenproblem’

The method, until now, concerns only the potentials constant outside finite intervals (limited,
non-singular wells). Could it tell us something about more generalV (t)? Consider any
continuousV : R → R such that:

V± = lim inf
t→±∞ V (t) > −∞. (32)
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In the traditional approach to the spectral problem, the main effort is to find the non-
trivial solutions of (1) vanishing on both extremest → ±∞ (which exists only as an
exception!) Following the observations of section 5 we propose to reduce the solution to
two minor steps, each one interpretable as a ‘1

2 spectral problem’: (i) for anyE find the
special solutions of (1) which vanish fort → −∞ (the ‘left eigenvectors’); (ii) find the
solutions of (1) which vanish fort → +∞ (the ‘right eigenvectors’).

While the difficulty of solving the complete spectral problem is formidable, one seldom
pays attention to the fact that every ‘half of it’ has a solutionalways, defining someleft
(right) decaying branchesfor (1) for any E < V−(E < V+). For big |t | they provide
the asymptotic cuese±(t, E) andasymptotic anglesα±(t, E) adequate to replace the fixed
vectorse±(E) (13) andanglesα±(E) in the algorithm of section 5. Indeed, one has:

Lemma A.Let β : R → R be a continuous real function with

lim inf
t→+∞ β(t) > η2 > 0. (33)

Then the two-dimensional solution space4 of the second-order differential equation

d2q

dt2
= β(t)q(t) (34)

has a one-dimensional subspace4− of solutions which vanish fort → +∞ and are square
integrable in [0,+∞).

Proof. Let N be a number such thatβ(t) > η2 for t > N . For t > N , the material point
q(t) moves under the influence of the repulsive elastic force

q̈ > η2q. (35)

Consider now an integral trajectory of (33) which satisfies the initial condition:
q(N) = C > 0, q̇(N) = ηC > 0. Using (35) one easily shows thatq(t) is positive,
monotonically increasing and

q(t) > q(N)eη(t−N) = Keηt . (36)

The method of the variation of constant then provides a new, linearly independent
solution:

q−(t) = q(t)

∫ +∞

t

dτ

q(τ )2
6 q(t)

∫ +∞

t

dτ

q(t)q(τ )
=

∫ +∞

t

dτ

q(τ )
6 e−ηt

Cη
(37)

which spans the desired subspace4−. �
An immediate consequence is:

Theorem 2.Let V (t) be a continuous potential in the one-dimensional Schrödinger equation
(1) and assume (32) holds. Then for everyE < V−, the two-dimensional solution space
of (1) contains a one-dimensional subspace4+(E) of solutions vanishing fort → −∞,
square integrable in(−∞, 0], while for anyE < V+ it contains a one-dimensional subspace
4−(E) of solutions vanishing fort → +∞, square integrable in [0,+∞). A number
E < min(V−, V+) is a point of the discrete spectrum of (1) if the subspaces4−(E) and
4+(E) coincide.

Proof. The proof is obtained by applying lemma A tot and−t with β(t) = V (t)−E and
0< η2 < V± − E respectively.

In the appendix we have collected the asymptotic forms of both ‘decaying branches’ of
(1) for severalV (t) including the oscillator and Coulomb potentials (see appendix). These
cues (the ‘12-eigenvectors’) permit us to solve, with any desired accuracy, the traditional
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spectral problem for a class of infinite potential wells. LetV (t) be one of these potentials
and letĒ < V∞. The energy eigenvaluesE < Ē (if they exist), can then be determined by
the following algorithm, generalizing the one of section 5:

(i) one fixes a finite interval [a, b] ⊆ R such thatV (t)− Ē0 > κ > 0 and the asymptotic
cue expressions are valid fort 6 a and t 6 b;

(ii) one uses the ‘vanishing cues’q±(t, E) to define two special angles

α−(a, E) = arctan[p−(a, E)/q−(a, E)] (38)

α+(b, E) = arctan[p+(b, E)/q+(b, E)] (39)

characteristic for the trajectories vanishing att → −∞ and t → +∞;
(iii) one integrates the equation (18) in [a, b] with the initial conditionα(a) = α+(a, E)

finding α(b) = α(b,E) and determining thedefect angle

0(E) = α−(b, E)− α(b,E) (40)

(iv) whenever

0(E) = nπ n = 0, 1, 2, . . . (41)

the numberE < Ē belongs to the point spectrum of the Schrödinger operator.
The non-trivial part of the method, of course, is to find the vanishing cues [24].

However, as the interval [a, b] can be arbitrarily wide, it is enough to know the asymptotic
expressions. Now, if (32) holds andE < Ē, the cues are monotonic, without zeros for
t < a and t > b; one can thus use the ansatz (2)–(3). Note that while the general solution
f of the Riccati equation (3) depends on one arbitrary constant, and (typically) diverges as
t → ±∞, thef (t) of vanishing cuehas no such arbitrariness, and can be determined with
any desired accuracy by applying the known iterative or asymptotic methods (see appendix).
For the oscillator and Coulomb potentials the cues (‘1

2-eigenvectors’) are already known in
the form of the asymptotic series for the confluent hypergeometric equation, vanishing either
at t → 0+ or t → ∞ (however, we prefer to represent them in the formq(t) = exp{f (t)},
sincef (t) = tanα defines the asymptotic angles).

Once the cuesq± (and the anglesα±) are determined, they can be used not only to
find the spectrum for one particular potentialV (t) but simultaneously, for an entire class of
potentials which share the asymptotical behaviour ofV (t) (and can be arbitrarily deformed
in any finite region). Moreover, given the ‘left cues’ for one potentialV1(t) and the ‘right
cues’ for another potentialV2(t) the method can be used as well to determine the spectrum
of any V (t) sharing the asymptotic behaviour ofV1(t) for t → −∞ and of V2(t) for
t → +∞.

For curiosity, we have used the asymptotic angles calculated in our appendix to
determine the spectrum for the ‘hybrid oscillator’ (figure 4) not so easily treatable by either
perturbative or variational methods:

V (x) =
{

1
2x

2 for x > 0
1
8x

2 for x 6 0.
(42)

For the operation interval [a, b] = [−50, 50] the limiting angles were found by using the
first five terms of the ‘Riccati series’ forf (t) (appendix). The computer was then asked
to integrate equation (18) by the Runge–Kutta method with accuracy and precision goals
10−10 determining0(E) for a sequence ofEs and solving (25) by interpolation. An identical
method applied to the genuine oscillator yieldsE0, E1 with the first nine decimals, andE2,
E3 with eight decimals correct.

Note that our method permits us to solve as easily any other hybrid or deformed cases (as
for example an oscillator affected by an arbitrarily high potential barrier in the middle, etc).
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Figure 4. The hybrid oscillator potential. The broken lines represent the standard energy
eigenvalues for each separated oscillator, and the full lines represent the actual eigenvalues for
this potential.

7. Singular and radial wells

The physically important wells not only extend to infinity, but can have singularities in the
finite region. The typical case is the one-dimensional equation (1) obtained after separation
of the angular variables in the Schrödinger equation inR3 with a radial potentialφ(r).
By denotingψ(x) = R(r)Y (θ, φ) and assumingY (θ, φ) to be an eigenfunction of the
square angular momentumL2, one ends up with the one-dimensional eigenvalue problem
for u(t) = tR(t):

−d2u

dt2
+

[
2V (t)+ l(l + 1)

t2
− 2E

]
u = 0 (43)

whose eigenvectors are the trajectories vanishing fort → 0+ and square integrable in any
[b,+∞)(b > 0). Similarly as before, each of the asymptotical conditions, typically, can be
satisfied by solutions of (1) for anyE. The existence of theright cues(solutions vanishing
for t → +∞) is assured by theorem 2. In turn, the existence of thezero-cues(solutions
vanishing at 0+) is the consequence of the following elementary theorem:

Theorem 3.Let φ(t) be a continuous real function in(0,+∞), satisfying

φ(t) > −k(t) (44)

in a certain subinterval(0, δ > 0), wherek : (0, δ) → R fulfils

k(t) > 0 and
∫ δ

0

∫ δ

t

k(t ′) dt ′ < +∞. (45)

Then the two-dimensional space4 of the functionsu : (0,+∞) → R which solve the
second-order differential equation

−d2u

dt2
+ φ(t)u = 0 (46)

must contain a one-dimensional subspace40 of solutions which vanish fort → 0+.

Proof. We shall stick to the classical image of section 2 puttingu(t) = q and u̇(t) = p;
(46) then paint the motion of a classical point massm = 1 under the influence of the elastic
force −2φ(t)q(t). Choose nowa ∈ (0, δ) such that

K(a) =
∫ a

0

∫ a

t

k(t ′) dt ′ dt < 1. (47)
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We shall first of all prove the following lemma:

Lemma B.If (θ, b] ⊂ (0, a], if q(t) is a solution of (46) withq̇(b) = 0 and if 06 q(t) 6
q(b) for all t ∈ (θ, b], then also

q(t) > [1 −K(a)]q(b) (48)

for t ∈ (θ, b].
In fact, the assumptions (44)–(45) subsequently imply

q̈(t) > −k(t)q(t) ⇒ (49)

⇒ q̇(b)− q̇(t) =
∫ b

t

q̈(t ′) dt ′ > −
∫ b

t

k(t ′)q(t ′) dt ′ > −q(b)
∫ b

t

k(t ′) dt ′ ⇒ (50)

⇒ q̇(t) 6 q(b)

∫ b

t

k(t ′) dt ′ ⇒ (51)

⇒ q(b)− q(t) =
∫ b

t

q̇(t ′) dt ′ 6 q(b)

∫ b

t

∫ b

t ′
k(t ′′) dt ′′ dt ′ 6 K(a)q(b) ⇒ (52)

⇒ q(t) > [1 −K(a)]q(b). (53)

Consider now any solutionq(t) of (46) with

q(a) > 0 q̇(a) = 0. (54)

We shall show that

κ = inf
t∈(0,a)

q(t) > 0. (55)

Suppose, to the contrary, thatκ 6 0. Thenq(t) either vanishes at someθ ∈ (0, a) or
vanishes in limit atθ = 0. In either case

lim
t→θ+

q(t) = 0 (0 6 θ < a) (56)

and soq(t) is bounded in(θ, a]. Denote q̄ = supt∈(0,a] q(t) > q(a) > 0. Sinceq(t) is
continuous in(0, a] it must accept the valuēq at some pointb, θ < b 6 a. If b < a, then
q(t) has a local maximum atb and q̇(b) = 0. If b = a, then alsoq̇(b) = q̇(a) = 0 because
of (54). Our lemma henceforth implies (48) for allt ∈ (θ, b] contradicting (56) and making
κ 6 0 impossible to sustain. We have thus shown (55). Now, the standard method of the
‘variation of constant’ provides the new solution of (46):

q0(t) = q(t)

∫ t

0

dτ

q(τ )2
(57)

whereh(t) = 1/q(t) due to (49) is positive and bounded in(0, a). It remains to prove that
q0(t)→t→0+ 0. Choose anyt, τ,0< τ 6 t 6 a. We shall show that

q(τ) > [1 −K(a)]q(t). (58)

In fact, suppose first of all thatq(τ) > q(t); then (58) trivially holds. Suppose in turn that
for someτ ∈ (0, t), q(τ) < q(t). Then there must be a pointb′ > τ in which q accepts its
upper limit in [τ, a] ⇒ q(b′) > q(t), q̇(b′) = 0, and our lemma immediately implies

q(τ) > [1 −K(a)]q(b′) > [1 −K(a)]q(t). (59)

Inserting this to (57), one has

q0(t) = q(t)

∫ t

0

dτ

q(τ )2
6 q(t)

∫ t

0

dτ

q(t)2[1 −K(a)]2

6 1

q(t)
t

1

[1 −K(a)]2
6 t

1

κ[1 −K(a)]2
→
t→0+

0. (60)

�
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In the appendix we have collected examples of asymptotic cues at 0+ for some typical
singularities.

To check the results, we have used the right cues(t → +∞) and the zero-cues of the
appendix to determine the discrete spectrum for the Coulomb wellV (t) = − 1

t
. Without

any advanced techniques of the shooting method [18], we have solved the angular equation
(18) with the help of the standard package ‘Mathematica’ (which uses the Runge–Kutta
method), obtaining the first 10 levels of the hydrogen atom.

E0 = −0.500 000 000 0

E1 = −0.125 000 000 0

E2 = −0.055 555 555 5

E3 = −0.031 249 999 9

E4 = −0.020 000 000 0

E5 = −0.013 888 888 8

E6 = −0.010 204 081 6

E7 = −0.007 812 500 0

E8 = −0.006 172 839 5

E9 = −0.005 000 000 0

The unexpectedly good accuracy to 10−10 for such a simple procedure is explained by
the fact that: (i) equation (18) is of the first order, and (ii) by the instability phenomenon
(the ‘error annihilating effect’ noticed in section 5). Once the asymptotic expressions were
cross-examined, we used the already tested right cues of the oscillator and the 0+ cues of
the Coulomb singularity to find the principal series of energy levels for the ‘hybrid well’:

V (r) = − 1
r

+ 1
2w

2r2 (61)

sometimes considered as a candidate to describe the quark confinement [25]. Taking
w2 = 0.000 05 we could observe that a very weak oscillator potential cancels the
condensation of the hydrogen energy levels forE → 0−, providing a continuous transition
to an equally spaced spectrum forE > −0.01 (see figure 4). Let us also notice that a close
relative of our method has been successfully used to study the logarithmic wells [26].

Figure 5. A hybrid well: the kind which could resemble the quark confinement.

We are tempted to predict that in the not-too-distant future, the perturbative methods of
determining spectra (at least for the one-dimensional Schrödinger operator) will be almost
forgotten and a part of patience nowadays devoted to special functions (permitting us to
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solve only exceptional problems!) will be invested into building up a bank of data about the
asymptotic behaviours and ‘vanishing cues’. Once these data are precise enough, the task
of determining the spectra of arbitrary potentials of known asymptotic types will become a
question for pocket calculators.
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Appendix. The evaluation of the vanishing cues

Below, we look straightforwardly forf = tanα defined by the Riccati equation (3) and
yielding q(t) = e

∫
f (t ′) dt ′ which vanish either fort → ±∞ or t → 0+.

A. Harmonic oscillator

The solution to the Riccati equation

ḟ + f 2 = w2t2 − 2E

which yieldsq(t) → 0 for t → ±∞, can be found in the form of an infinite series:

f (t) = −wt +
+∞∑
i=0

ait
−i

where

a0 = a2s = 0 a1 = E

w
− 1

2

as+1 = 1

2w

{
− (s − 1)as−1 +

s∑
j=1

ajas−j

}
(s > 2).

Explicitly

f (t) = −wt +
(
E

w
− 1

2

)
1

t
+ 1

2w

(
E

w
− 1

2

) (
E

w
− 3

2

)
1

t3

+ 1

2w2

(
E

w
− 1

2

) (
E

w
− 3

2

) (
E

w
− 2

)
1

t5
+ 1

2w3

(
e

w
− 1

2

) (
E

w
− 3

2

)
×

[(
E

w
− 2

) (
E

w
− 3

)
+ 1

4

(
E

w
− 1

2

) (
E

w
− 3

2

)]
1

t7

+ 1

2w4

(
E

w
− 1

2

) (
E

w
− 3

2

) [(
E

w
− 2

) (
E

w
− 3

) (
E

w
− 4

)
+1

4

(
E

w
− 1

2

) (
E

w
− 3

2

) (
E

w
− 4

)
+ 1

2

(
E

w
− 1

2

) (
E

w
− 3

2

) (
E

w
− 2

)]
1

t9
+ · · · .



The classical Schr¨odinger equation 6023

The asymptotic form of the ‘1
2-eigenvectors’ fort → ±∞ is

q∓ ' e− 1
2wt

2|t |( Ew− 1
2 )e− 1

w
( E
w

− 1
2 )(

E
w

− 3
2 )[

1
t2

+ 2
w
( E
w

−2) 1
t4

+···]
.

The consistency with the textbook expressions forψ(t) in terms of the confluent
hypergeometric function is easily verified.

B. The Coulomb potential

The series solution for

ḟ + f 2 = −2

t
+ l(l + 1)

t2
− 2E

(yielding q0(t) → 0 whent → 0+) turns out to be

f0 = l + 1

t
+

+∞∑
i=0

ait
i .

Explicitly

f0 = l + 1

t
− 1

l + 1
− 2E(l + 1)2 + 1

(2l + 3)(l + 1)2
t + · · · .

Henceforth, the ‘12-eigenvector’ vanishing fort → 0+ is

q0 ' t l+1e
− 1
l+1 t− 2E(l+1)2+1

2(2l+3)(l+1)2
t2+···

consistently with the well known expressions in terms of the confluent hypergeometric
series.

For t → +∞, by similar arguments,f has the form

f− = −
√

2|E| + 1√
2|E|

1

t
− 2l(l + 1)|E| + √

2|E| − 1

4|E|√2|E|
1

t2
+ · · ·

yielding the ‘12-eigenvector’

q− ' e−√
2|E|t t

1√
2|E| eh(1/t)

whereh(ξ) has the form of an analytic series vanishing atξ = 0. However, we have found
that if the integration interval is wide enough, a simpler asymptotic expression gives good
results:

f− = −
√

−2E − 2

t
+ l(l + 1)

t2

and the only problem we have is to integrate the angular equation (18) in a sufficiently long
range, to have the cue without nodal points. The integration can be simplified by changing
variables fromt to x = t/(1 + t).
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C. The Yukawa potential

This case is very similar to the preceding one, though no longer treatable in terms of
hypergeometric series. The Riccati equation forf (t) = tanα(t) reads

ḟ + f 2 = −2

t
e−λt + l(l + 1)

t2
− 2E.

Our theorem 3 ensures the existence of the solution of (1) vanishing at zero, of the form
ψ0(t) = exp{f0(t)} where

f0 = l + 1

t
+

+∞∑
i=0

ait
i .

After calculations

a0 = −1

l + 1
a1 = 2(λ− E)(l + 1)2 − 1

(2l + 3)(l + 1)2

as+1 = −1

2l + s + 3

{
2(−λ)s+1

(s + 1)!
−

s∑
r=0

aras−r

}
(s > 1).

Henceforth, the vanishing cueq0(t) is

q0(t) ' t l+1e
− 1
l+1 t+ 2(λ−E)(l+1)2−1

2(2l+3)(l+1)2
t2+···

(no longer representable in terms of the confluent hypergeometric series!).
For t → +∞, we have used a finite approximant:

f− =
√
l(l + 1)

t2
− 2E − 2

t
e−λt

changing simultaneously the integration variable tox = t/(1 + t).

D. A hybrid ‘quark potential’

The Riccati equation (3) for the effective potential

V (t) = −1

t
+ 1

2
w2t2 − l(l + 1)

2t2

yields the followingf0(t) for t → 0+:

f0 = l + 1

t
− 1

l + 1
− 2E(l + 1)2 + 1

(2l + 3)(l + 1)2
t − 2E(l + 1)2 + 1

(2l + 3)(l + 1)3(l + 2)
t2

+ 1

2l + 5

{
w2 − 4E(l + 1)2 + 2

(2l + 3)(l + 1)4(l + 2)
− (2E(l + 1)2 + 1)2

(2l + 3)2(l + 1)4

}
t3 + · · · .

The vanishing cue

q0 = t l+1e− 1
l+1 t+g(t)

whereg(t) has the form of an analytical series.
Meanwhile, the solution vanishing att → +∞ corresponds tof−(t) in the form

f− = −wt +
[
E

w
− 1

2

]
1

t
+ 1

w

1

t2
+ 1

2w

{[
E

w
− 1

2

] [
E

w
− 3

2

]
− l(l + 1)

}
1

t3
+ · · · .

The vanishing cue is

q− ' e− 1
2wt

2
t(

E
w

− 1
2)ek(1/t)

wherek(ξ) is an analytic series vanishing atξ = 0.
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