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Abstract. Prufer's spectral algorithm is applied to the classical analogue of t8lager's
equation. The discrete spectrum is interpreted as a bifurcation phenomenon caused by two
simultaneous classical motions: rotation and squeezing. The energy eigenvalues coincide with
the bifurcation parameters for the classical orbits.

1. Introduction

One of the known curiosities of the one-dimensional 8dhrger equation is its reducibility
to the first-order differential equation of Riccati. Given the eigenvalue problem for
Schibdinger’'s wavepackey (x):

1 d?
—E@W(X)‘F[V(x)—E]l/f(x):O 1)
(wherem = h = 1), the formal substitution
Y(x) = et )
leads to the classical Riccati equation f6tx) = ¢'(x):
f'0) + f(0? =2[V(x) - E]. ®)

Despite its apparent simplicity, (3) is one of the non-trivial and persistently returning
problems in mathematical physics. In fact, even the field equations of general relativity
might be viewed as an ‘analogue’ of the Riccati equation (see e.g. [1]). An obvious idea
would be to replace completely the spectral problem (1) by its first-order equivalent (3).
The difficulties, though, are formidable. In the first place, the ansatz (2) is impractical if
¥ (x) is a real sign changing function. Moreover, (3) has a tendency to create singularities
of f(x), which appear even foV (x) = constant, and correspond to the nodal points of
Y[V = Vo = fx) = —ktantkx), wherek = /2(E — Vy)]. The subtler ansatz of
Aharonov and Au [2] takes care only of a part of this difficulty.

A different chapter in these attempts was opened by the angular analogues of the Riccati
equation (3) studied by Bfer [3], Milne [4], Drukarev [5] and Francetti [6]. Yet their works
appeared at the wrong time (or in the wrong place?) and did not receive the attention which
they deserved. The methods ofuRar and Milne [3, 4] were soon overshadowed by the
(less precise) WKB [7]. Drukarev and Francetti, apparently, have formulated their equations
just to facilitate the calculation of the phase shifts (which they did, but the achievement
later faded together with the whole ‘phase shift trend’). As a result, the multiple forms of
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the Riccati equation remain a kind of sophisticated curiosity, basically known but seldom
applied. Notable exceptions are the techniques of evaluating the number of energy levels
for one-dimensional Schdinger's operator [8-11], developed in the classical works of
Calogero [12,13]. Yet the capacities of the method to determine the energy spectra are
far from exhausted. Our purpose here is to complete the story, by studying the exact
numerical consequences of the angular algorithms [3-6]. We shall show that their numerical
integration is, most likely, one of the most powerful approximate methods to determine the
eigenvalues of one-dimensional (or spherical) spectral problems, which might reduce the
traditional perturbation calculus, at least for one-dimensional eigenvalue problems, into a
kind of museum piece. What is no less interesting is that the method suggests a new concept
of the spectrum, which might exceed the limits of the linear theory.

2. The classical model of Schidinger’'s equation

Curiously, the meaning of the algorithm is best seen by forgetting completely about the
guantum mechanical sense of Sifinger’s equation and sticking to its classical equivalent.
This point of view, though seldom applied, has some notable traditions (see e.g. discussions
in the 1970s [14], the works on the shooting method, discussions by Coleman [15] and by
Ashtekar [16]). Its most provocative expression was the description of the Saturn rings as
the band spectrum of Sdbtinger’'s operator [17].
To perceive the classical sense of (1) denote the varialidg + and call ittime put
alsog = ¥ (¢), p = ¥/(¢t). Equation (1) then becomes
dg dp
o 4 = 2AV® - Elg. “)
Note, that (4) coincides with the canonical equations for the pair of classical variables
q, p defined by a time-dependent Hamiltonian
2
Hn = +[E-VODlg® (5)

representing the classical oscillator with a time-dependent quadratic pot&rtal) =
[E — V(1)]¢%. The classical phase space trajectory of (4), (5):

q(1)
p()
‘paints’ a detailed image of Sobdinger’'s wavefunction (x) and its first derivativey’(x).

This fact has been decisive in representing the spectral bands dfd8uier's operator as

the stability bands of a classical system (the Saturn rings! [17]). It is as useful in analysing
the point spectra.

q(t) = (t € R) (6)

3. The bifurcations

Assume for simplicity that none of, V(¢) is positive, andV (¢) vanishes outside of a
finite interval u, ] € R(V(t) = 0 fort < a andt > b). The equations (4)-(6) thus
describe a classical point moving under the influence of a constant repulsive potential
Eq?, corrected by an attractive termV (t)g?. For E < 0, the typical trajectory tends

to o0 ast — =oo (for large |¢| the repulsive force dominates, driving the classical
point to infinity). Occasionally, however, a curious dynamical phenomenon occurs; some
trajectories, emerging from the phase space origin= p = 0) att = —o0, by a

rare coincidence, acquire a momentum sufficient to return asymptotically to the origin,
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against the repulsive forces. This phenomenon, extremally unstable, represents precisely
the eigenvectors of (L)yf(x) — 0 asx — +o¢], i.e. the most stable forms of quantum
motion. The effect looks like a classical game of skill, where the ‘goal’ is to collocate the
material point at the repulsion centre (see works on the shooting method [18]). To explain
its bifurcation mechanism some geometry elements on the phase7lare useful.

Due to the linearity of (4)—(5) the phase vectgr) at anyt € R depends linearly on
the initial vectorg(a) for anya € R, i.e.

q(t) = u(t,a)q(a) )

where the 2 2 simplectic real matrix (¢, a) is called thetransferenceor evolution matrix
Equations (4) translate themselves easily into the first order matrix equatiarifer):

du

4 = Aout.a) (®)
where
0 1
Al = H 2V(1)— E] 0 ®)

Mathematically, the matrix equation (8)—(9) is neither easier nor more difficult to solve
than the original Sclidinger equation (1). Yet it leads to geometric pictures which help to
solve the spectral problem (1).

Consider first of all the region outside the potential wéll,= (—o0, a) U (b, +00),
whereV (¢t) = 0. The generatoA(¢) in € is constant:

0 1
21E] 0

leading to the explicit solutions
er = q(a) for ¢
q() =

A=A = fort <aort>b (10)

<a
AP q(b) forr > b. (11)

Note thatA fulfils
A2=2|E|1 (12)

and so it has two eigenvalues = +./2|E| and eigenvectore..:

eigenvalues eigenvectors
1
he=FVAEL e =) 2|E|H
1
Ao =—/2|E e_ = . 13
V2| _ szl (13

Henceforth, forr € @ (i.e. in absence o/ (r)) the motion on the phase plarf@
preserves the directions. producing a continuous squeezing: the direct&an expands
while e_ exponentially shrinks as— +oo (inversely fort — —o0). In the interval &, b]
this squeezing is corrected by the rotation generated by. (The squeezing is typically
induced by the Hamiltonians of repulsive oscillators, while the attractive ones generate the
phase space rotations.)

The phase trajectory (6)—(7), in general, diverges in betkb and —oco. However,
exceptions exist. If the initial phase vectg(a) is proportional toe,, then in agreement
with (11) g(¢) vanishes as exp[— a)+/2|E|] for t — —oo. In turn, if q(b) is proportional
to e_, then q(¢) vanishes as exp[(t — b)+/2|E]] for t — +o0o. A numberE < 0 is
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an eigenvalueof the Schiodinger operator in (1) iff there exists a non-trivial trajectory
vanishingon both extremes — —oo and¢ — +oo. This can happen if and only if the
evolution between = a ands = b bringse, into a vector proportional te_, i.e.

u(b, a)e, = constantx e_. (14)

To monitor the phenomenon, consider the integral trajectories of (4)—(5) for different
values of E < 0O (or alternatively, for different amplitudes of (¢)). Let I, I, —1I,,
—1_ be the radial%-lines determined by, ,e_, —e,, —e_ and letP* andP~ denote two
open%-planes limited by+7_ containingl, and —1,, respectively (see figure 1). In the
absence ofV(r), P and P~ are evolution-invariant; as — +oo, all the trajectories in
P* escape to infinity tending asymptotically to the-axis while all the trajectories ifP~
tend to—1,. Consider now the trajectory which departs frgf+-co) = 0 passing through
qgla) =e,(E). If V=0,q() =exp[t —a)v/2|E|]e (i.e. our trajectory escapes to infinity
exactly along thd . -axis). If |V ()| is non-zero but small ind, b], the escape along, (due
to the squeezing/expansion) is corrected-y(r)¢? which generates a clockwise rotation in
‘P. Yet once the rotation dies out at> b, the squeezing takes over and drives the trajectory
back again tal, ast — +oo. If |V (¢)| is stronger (or alternatively, ifE| is weaker) the
trajectory will deviate more fron1,. and return to it more slowly (figure 1). Finally, for
sufficiently small| E| (or sufficiently strondV|), the rotation caused by (¢) will bring q(b)
to I_ (see figure 1). Instead of returning Iq, the phase point will fall down right to the
origin along the (shrinking) directioh_, drawing a (normalized) eigenvector of (1). Féx

eigenvector

-0.06 -0.04

-0.06t

Figure 1. The metamorphosis of the classical trajectory (4)—(5) illustrates a wider concept of the
spectrum, not necessarily restricted to the linear operators. We haveEaken% and V()

in the form of a ‘cosinusoidal well'V (t) = —Acost (A > 0) for |t| < 7/2, andV (r) = O for

lz| > /2. As x grows, the deformation due to the rotating ter¥ (r)¢2 expands clockwise
around the phase space origin, crossing the ‘shrinking dxigF) several times. At each new
intersection a bifurcation occurs, producing a new closed orbit interpretable as an eigenvector of
the Schédinger equation (1). The analogous trajectory transformations would occur for a fixed
A > 0 and variableE.
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q(t)=Psi(t)

Eo<E

Figure 2. As q(¢) draws the phase trajectory (figure L)) reproduces the wavefunction.
Above, three cases of wavefunctions of figure 1: (i) b Ep (the energy of the ground state)

the trajectory calculated as the prolongation of the left vanishing cue-at—m/2 achieves

a smooth union with the (algebraically determined) right cué at +x/2; (ii) the analogous
trajectory determined foE < Ep fails to fit smoothly the ‘right cue’. The failure produces
the defect angld™ between the numerical solution and the ‘algebraic cue’; (iii) an analogous
phenomenon foE > Eg. In both cases (ii), (iii) the defect anglé causes a quick divergence

of ¢(¢). The same phenomenon occurs for unlimited wells; the only difference is that the cues
are not exactly exponential but are given by the Riccati ansatz (2)—(3) (see appendix).

still smaller,q(b) will cross toP~ and the trajectory will alter its asymptotic behaviour: it
will tend now to—1, ast — 4oo. For|E| further decreasing (diV| increasing)g(d) will
circulate onP crossing subsequenthy/_, I_, —1_,I_,.... Every such event will produce
a closed trajectory (an eigenvector!), coinciding with an abrupt change of the asymptotic
type. The eigenvalues of the energy operator are thus interpretalbiéuasation values
(i.e. the values oF for which the classical orbits produce bifurcations). An idea arises that
the discrete spectrum of (1) could be simgifined as a bifurcation phenomencaused by
an ‘antagonity’ between two different types of motion. Such a definition would not require
linear spaces, and so could be extended to the non-linear operators (see the discussions in
[19]).

What is no less interesting, théfurcation valuescan be determined byrather simple
algorithm,independent of the traditional perturbation methods

4. The angular Riccati equations

Since the vector norms in (14) are irrelevant, (14) can be conveniently written in terms of
an angular coordinate Following Ptifer [3], we introduce

g = p COSx p = pSina. (15)



6014 B Mielnik ard M A Reyes

The canonical equations become
0 COS — ap Sina = p Sina (16)
o Sina + ap cosa = 2[V(t) — E]p cosa a7

wherep anda mean the time derivatives. Curiously, the equation for the angular variable
separates. Multiplying (16) by sina, (17) by cosx (or vice versa) and adding one gets
the first-order differential equation fer alone:

& =2[V(t) — E]cos « — sirf « (18)
and simultaneously
p/p=1[V(t)— E+ i]sin2. (19)

The equation (18) was first derived byiier [3], then by Drukarev [5] and Franchetti
[6]. Its link to the original Ricatti idea is immediate. In fact, (18) implies

%tana +tarfa = 2[V () — E]. (20)

The advantages of (18) over the traditional Riccati equation (3), however, are that: (i)
equation (18) can be solved for arbitrawg without leading to singularities; (ii) it offers
a clear geometric idea of the spectral condition, and (iii) it leads to an easy numerical
algorithm. Indeed, notice that the phase vectwrsdefine the angles

o+ (E) = L arctany/2|E| (22)
8(E) = ay(E) —a_(E) = 2arctan/2|E|. (22)

In agreement with (11), the trajectory tends to zere-ito iff «(a) = oy + ki, and it
tends to zero intoo iff a(b) = «— + mm. The trajectory tends to zero for both— +oo
iff the time evolution (18) converts the initial angt&(a) = o into a(b) = a_ + nr.
Thus, to check whether a numbEr< 0 is an energy eigenvalue it is sufficient to solve the
differential equation (18) wittE fixed and with the initial conditionx(a) = a. (E), finding
a(b) = a(b, E). Whenever the total angular change = «a(a) — a(b) in [a, b] fulfils

Ao = 8(E) +nw n=0,12... (23)

E belongs to the discrete spectrum. A convenient form of (23) involvespketral defect
angle defined as a difference between ttesired anglex_(E) and theachieved angle
a(b, E):

I['(E)=a_(E)—a(b, E) = Aa — 8(E). (24)
The condition (23) then tells
I'(E) =nm n=20,12.... (25)

An immediate generalization of the conditions (23)—(25) is obtained/f@) constant
but not necessarily vanishing outside b):

{ V(a) fort<a
V() =
V(b) fort > b.

The motion (4)—(6) then has two different constant generatgrg and A (b) fort < a
and: > b and the formulae (23)—(25) hold after substitutiig(a) — E| or |V (b) — E|
instead of|E| in the expression (21) fax, anda_, respectively.
Observe that (15) is not the only way to separate the angular part of (4)Plane
is a simplectic space without a natural measure of distances and angles. Henceforth, instead

(26)
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of introducing the polar variable (15) straightforwardly, one might as well introduce new
canonical coordinateg, p’, and only after define the angular variablegdnp’ plane. Some
profits of this freedom were explored by Calogero [12]; here let us natice only the plausible
form of the spectral condition if the new angular variable is introduced by

q = kp COSy

p=«"tpsiny (27)
wherex = (2|E|)~Y4. The motion equations then read

y =/2[E|cosd + /2/|E|V (1) coS y (28)

plo = (V2IEI+ V(1) /IEI/2) sin2y (29)

and the limiting angles are independentify. = +7%). The spectral condition becomes
Ay =@+ Hr (30)

in a visible reconciliation between the oscillator spectrum and the Sommerfeld quantization
conditions.

5. The numerical algorithm

The importance of the angular variables, in principle, has been known for a long time [3—
6,12,13,20]. Thalefect angleequivalent to (24) was introduced by Calogero, to evaluate
the number of the energy levels for the one-dimensional and radiab&iolyer eigenproblem

[13]. Yet, the efficiency of the method to determine the exact eigenvalues somehow escaped
attention (perhaps due to a general fascination with the perturbative methods!). The first
reason why (18) is so easily applicable is:

Theorem 1For any bounded, piece-wise continuoWgs) with a compact support in
[a, b], T(E) is a strictly increasing function of for E < min{V (a), V (b)}.

The proof is deduced from two observations. (i)dfr) and o/(r) are two solutions
of (18) with a(a) < o'(a) thena(b) < o'(b) (indeed, otherwise there would be a point
¢ € [a, b] with a(c) = &'(c) contradicting the uniqueness of the solutions of (18)); (ii) if
a1(t) andaz(¢) are solutions of two equations of form (18) with two different parameters
E = E; and E = Ej, respectively, antE; > E, thenai(a) = az(a) = a1(b) < az(b)
(the proof involves only the standard comparison theorem for equation (18); see e.g. [21],
p 394). The observations (i) and (ii) imply now thatb, E) for an angular trajectory
starting ina(a) = a, (E) is a monotonically decreasing function &f, and the proof is
completed by noticing that_(E) is increasing.

As an illustration, we have used (25) to determine the energy levels for the truncated
one-dimensional oscillator potential (see also [22]):

V) %wzxz for x| <a 31)
X) =
%a)zaz for |x| > a.

The limiting angles arer, = + arctanvw2a? — 2E. We have determined the angular
function'(E), 0 < E < V(a), for w = 1,a = 2 anda = 4, by integrating numerically
the angular equation (18) (see figure 3). It yields the two energy levels for the oscillator
truncated at = 2, and eight energy levels for the oscillator truncated at 4, all calculated
with accuracy up to 10°. Curiously, the obtained eigenvalues are very close to the first
two and eight levels of the exact oscillator, respectivély = n ~|—% (indeed, even the last
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Figure 3. The defect angld (E) = o— — a(a, E) for two cases of truncated oscillatorsa) (
b= —a=2and p) b =—a = 4. The intersections of the ‘stepping’ functiof$E) with the
horizontal linesl” = nx give the eigenvalues of the Séidinger problem.

eigenvalues of the truncated potential (31) differ very little from the orthoHpx= 1.5,

and E; = 7.5). Compared with the Ritz method, the basic advantage of our algorithm is its
essential simplicity (no need to waste skills inventing an adequate class of test functions). A
notable advantage (and this is the second reason why (18) is so easily applicable) is that the
spectral functiom" (E) is unstableand changes very quickly when crossing the sequence of
critical valuesl' = nr(n = 1, 2,...) (see figure 3). Thus, even a very small change of

in the vicinity of an eigenvalue, translates into a visible effecl jrsignificantly improving

the accuracy. This ‘smashing error effect’ was apparently overlooked when the angular
algorithms were formulated [3—6]. It is explained by the fact that the energy eigenvalues
correspond to the bifurcations of the orbits and the final peih) deflects very fast when

E crosses the bifurcation value (compare Calogero [23], p 274). In the lintit=ast-co,

a(b, E) would be discontinuous and(E) would be an exact step function!

6. The ‘5 eigenproblem’

The method, until now, concerns only the potentials constant outside finite intervals (limited,
non-singular wells). Could it tell us something about more gen€i@)? Consider any
continuousV : R — R such that:

Vi = liminf V() > —oo. (32)
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In the traditional approach to the spectral problem, the main effort is to find the non-
trivial solutions of (1) vanishing on both extremes— +oo (which exists only as an
exception!) Following the observations of section 5 we propose to reduce the solution to
two minor steps, each one interpretable a% apectral problem’: (i) for anyE find the
special solutions of (1) which vanish fer— —oo (the ‘left eigenvectors’); (ii) find the
solutions of (1) which vanish for — +oo (the ‘right eigenvectors’).

While the difficulty of solving the complete spectral problem is formidable, one seldom
pays attention to the fact that every ‘half of it' has a solutadways defining somdeft
(right) decaying branchedor (1) for any E < V_(E < V,). For big |¢t| they provide
the asymptotic cuee.. (¢, E) andasymptotic angles. (z, E) adequate to replace the fixed
vectorse. (E) (13) andanglesa. (E) in the algorithm of section 5. Indeed, one has:

Lemma A.Let 8 : R — R be a continuous real function with

liminf (1) > n? > 0. (33)
Then the two-dimensional solution spa€eof the second-order differential equation

d?q

az = B®)q(t) (34)

has a one-dimensional subspate of solutions which vanish for — +o0o and are square
integrable in [0+00).

Proof. Let N be a number such that(r) > »? for + > N. Fort > N, the material point
q () moves under the influence of the repulsive elastic force

g >n’q. (35)

Consider now an integral trajectory of (33) which satisfies the initial condition:
q(N) = C > 0, g(N) = nC > 0. Using (35) one easily shows thatr) is positive,
monotonically increasing and

q(1) = q(N)e"" "V = Ke. (36)
The method of the variation of constant then provides a new, linearly independent
solution:
+00 dr +00 dr +00 dr e
0 =q) [ <q0 [ - < 37
COEA0 ) @ ST qwa T g T e 57
which spans the desired subspate. O

An immediate consequence is:

Theorem 2Let V() be a continuous potential in the one-dimensional &dimger equation
(1) and assume (32) holds. Then for evdty< V_, the two-dimensional solution space
of (1) contains a one-dimensional subspate(E) of solutions vanishing for — —oo,
square integrable i6—oo, 0], while for anyE < V, it contains a one-dimensional subspace
E_(FE) of solutions vanishing for — 400, square integrable in [B-occ). A number

E < min(V_, V,) is a point of the discrete spectrum of (1) if the subspa€esE) and
E.(E) coincide.

Proof. The proof is obtained by applying lemma At@nd—¢ with () = V(¢t) — E and
0 < n? < V. — E respectively.

In the appendix we have collected the asymptotic forms of both ‘decaying branches’ of
(1) for severalV (¢) including the oscillator and Coulomb potentials (see appendix). These
cues (the %-eigenvectors’) permit us to solve, with any desired accuracy, the traditional
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spectral problem for a class of infinite potential wells. IW&t) be one of these potentials
and letE < V.. The energy eigenvaluds < E (if they exist), can then be determined by
the following algorithm, generalizing the one of section 5:

(i) one fixes a finite intervald, b] € R such thatV (r) — Eg > « > 0 and the asymptotic
cue expressions are valid for< a andt < b;

(i) one uses the ‘vanishing cuegy (¢, E) to define two special angles

a_(a, E) = arctanp_(a, E)/q_(a, E)] (38)
@ (b, E) = arctanp, (b, E)/q, (b, E)] (39)

characteristic for the trajectories vanishingtat- —oco andt — +o0;
(i) one integrates the equation (18) im, [p] with the initial conditiona(a) = a4 (a, E)
finding «(b) = a(b, E) and determining thelefect angle

C(E)=a_(b,E) —a(b, E) (40)
(iv) whenever
I'(E) =nm n=0,12... (42)

the numberE < E belongs to the point spectrum of the Satlinger operator.

The non-trivial part of the method, of course, is to find the vanishing cues [24].
However, as the intervak[ b] can be arbitrarily wide, it is enough to know the asymptotic
expressions. Now, if (32) holds anfl < E, the cues are monotonic, without zeros for
t < a andz > b; one can thus use the ansatz (2)—(3). Note that while the general solution
f of the Riccati equation (3) depends on one arbitrary constant, and (typically) diverges as
t — +o0, the f(¢) of vanishing cuehas no such arbitrariness, and can be determined with
any desired accuracy by applying the known iterative or asymptotic methods (see appendix).
For the oscillator and Coulomb potentials the cu%se(rgenvectors’) are already known in
the form of the asymptotic series for the confluent hypergeometric equation, vanishing either
att — 0, ort — oo (however, we prefer to represent them in the fart) = exp{f ()},
since f(t) = tana defines the asymptotic angles).

Once the cueg. (and the anglesr.) are determined, they can be used not only to
find the spectrum for one particular potentiédr) but simultaneously, for an entire class of
potentials which share the asymptotical behaviouv ¢f) (and can be arbitrarily deformed
in any finite region). Moreover, given the ‘left cues’ for one potentiglr) and the ‘right
cues’ for another potentidl>(z) the method can be used as well to determine the spectrum
of any V(¢) sharing the asymptotic behaviour &f(¢) for t — —oco and of V,(¢) for
t — +oo.

For curiosity, we have used the asymptotic angles calculated in our appendix to
determine the spectrum for the ‘hybrid oscillator’ (figure 4) not so easily treatable by either
perturbative or variational methods:

Vix)= :

For the operation intervak| b] = [—50, 50] the limiting angles were found by using the
first five terms of the ‘Riccati series’ fof () (appendix). The computer was then asked
to integrate equation (18) by the Runge—Kutta method with accuracy and precision goals
1010 determiningl’ (E) for a sequence af's and solving (25) by interpolation. An identical
method applied to the genuine oscillator yieldlg E1 with the first nine decimals, an#,,
E3 with eight decimals correct.

Note that our method permits us to solve as easily any other hybrid or deformed cases (as
for example an oscillator affected by an arbitrarily high potential barrier in the middle, etc).

g 42
< (42)

= NI
N



The classical Scludinger equation 6019

/ E2~1,667399152170

El=0.996674845237

E(=0.339309660629

2

Figure 4. The hybrid oscillator potential. The broken lines represent the standard energy
eigenvalues for each separated oscillator, and the full lines represent the actual eigenvalues for
this potential.

7. Singular and radial wells

The physically important wells not only extend to infinity, but can have singularities in the
finite region. The typical case is the one-dimensional equation (1) obtained after separation
of the angular variables in the Sédinger equation irR® with a radial potentiak(r).

By denotingy (x) = R(r)Y (0, ¢) and assuming’' (6, ¢) to be an eigenfunction of the
square angular momentuii¥, one ends up with the one-dimensional eigenvalue problem
for u(t) = tR():

d’u Il+1
gzt [2\/(;) +—g - ZE} u=0 (43)

whose eigenvectors are the trajectories vanishing fer 0, and square integrable in any
[b, +00)(b > 0). Similarly as before, each of the asymptotical conditions, typically, can be
satisfied by solutions of (1) for an¥. The existence of theght cues(solutions vanishing

for t — +00) is assured by theorem 2. In turn, the existence ofzi®-cues(solutions
vanishing at Q) is the consequence of the following elementary theorem:

Theorem 3Let ¢(r) be a continuous real function 0, +o0), satisfying
d@) = —k(1) (44)
in a certain subinterval0, § > 0), wherek : (0, §) — R fulfils

) §
k(t) =0 and / / k() dt' < +oo. (45)
0 Jr

Then the two-dimensional space of the functionsu : (0, +00) — R which solve the
second-order differential equation

d2
— s HOOU=0 (46)

must contain a one-dimensional subspageof solutions which vanish for — 0,.

Proof. We shall stick to the classical image of section 2 puttiig = ¢ andu(r) = p;
(46) then paint the motion of a classical point mass- 1 under the influence of the elastic
force —2¢ (t)g(t). Choose now: € (0, §) such that

K(a) = /a /a k(H)d'dr < 1. 47)
0 t
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We shall first of all prove the following lemma:

Lemma B.If (8, b] C (0, a], if ¢q(¢) is a solution of (46) withy(b) = 0 and if 0< ¢(r) <
q(b) for all t € (6, b], then also

q(t) 2 [1 - K(a)lq(b) (48)
for ¢t € (0, b].
In fact, the assumptions (44)—(45) subsequently imply
Gt = —kt)qt) = (49)
b b b
=qb)—q@) = / Ga'yd' > — f k(t)q(t") dt' > —q(b) / k(') dt' = (50)
b
=4q@) < q(b)/ k(t')dt" = (51)
t b b b
= a0 —a = [ 0y <q) [ [ kerdd < K@aw) = (52)
= q(1) = [1 - K(a)]q®). (53)
Consider now any solutiog(r) of (46) with
g(a) >0 g(a) =0. (54)
We shall show that
K= i(r(u)f )q(t) > 0. (55)

Suppose, to the contrary, that< 0. Theng(¢) either vanishes at somee (0, a) or
vanishes in limit ab = 0. In either case

tlino) q(t)=0 0<0 <a) (56)

and sog(¢) is bounded in(9, a]. Denoteg = SURco,q 4 = qla) > 0. Sinceq(t) is
continuous in(0, a] it must accept the valug at some poinb, 6 < b < a. If b < a, then

q (1) has a local maximum dt andg(b) = 0. If b = a, then alsqj (b) = ¢(a) = 0 because

of (54). Our lemma henceforth implies (48) for alE (6, b] contradicting (56) and making

x < 0 impossible to sustain. We have thus shown (55). Now, the standard method of the
‘variation of constant’ provides the new solution of (46):

0 =q0) [ L
W= Jo q@p
whereh(t) = 1/q(t) due to (49) is positive and bounded (@, «). It remains to prove that
qo(t) =0, 0. Choose any, 7,0 < v <t < a. We shall show that

q(t) 2 [1 - K(a)]q(@). (58)
In fact, suppose first of all that(z) > ¢(¢); then (58) trivially holds. Suppose in turn that
for somer € (0, 1), g(r) < ¢q(#). Then there must be a poiat > t in which ¢ accepts its
upper limitin [z, a]l = q (') > q(t), ¢(’) = 0, and our lemma immediately implies

q(t) = [1 - K(@]q®) = [1 - K@)]q@). (59)
Inserting this to (57), one has

(57)

(l‘)— (t)/td‘[< ([)/td[
D=0 |7 g2 S17 )y g2 — K@)
< 1 1 < 1 0
SO T-K@P S kL-K@P =0,

(60)
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In the appendix we have collected examples of asymptotic cues firGome typical
singularities.

To check the results, we have used the right daes +o00) and the zero-cues of the

appendix to determine the discrete spectrum for the Coulomb Vel = —;1. Without

any advanced techniques of the shooting method [18], we have solved the angular equation
(18) with the help of the standard package ‘Mathematica’ (which uses the Runge—Kutta
method), obtaining the first 10 levels of the hydrogen atom.

Eo = —0.5000000000

E; = —0.1250000000

E; = —0.0555555555

E3 = —0.0312499999

E4 = —0.0200000000

Es = —0.0138888888

Es = —0.0102040816

E7 = -0.0078125000

Eg = —0.0061728395

E9 = —0.0050000000

The unexpectedly good accuracy to1®for such a simple procedure is explained by

the fact that: (i) equation (18) is of the first order, and (ii) by the instability phenomenon
(the ‘error annihilating effect’ noticed in section 5). Once the asymptotic expressions were

cross-examined, we used the already tested right cues of the oscillator and tieof
the Coulomb singularity to find the principal series of energy levels for the ‘hybrid well’:

V()= -1+ lwi? (61)
sometimes considered as a candidate to describe the quark confinement [25]. Taking
w? = 0.00005 we could observe that a very weak oscillator potential cancels the

condensation of the hydrogen energy levels fior~ 0~, providing a continuous transition
to an equally spaced spectrum fBr> —0.01 (see figure 4). Let us also notice that a close
relative of our method has been successfully used to study the logarithmic wells [26].

Ed= 0.3019701340
E7= 0.2534060693
E6= 0.2040474721
E5= 0.1535226330

E4= 0.1011291432
E3= 0.0452921445

XC  E24-0,0187216536
El=-0,1152167704

.................................. E0=-0,4992519947

Figure 5. A hybrid well: the kind which could resemble the quark confinement.

We are tempted to predict that in the not-too-distant future, the perturbative methods of
determining spectra (at least for the one-dimensional &tthger operator) will be almost
forgotten and a part of patience nowadays devoted to special functions (permitting us to
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solve only exceptional problems!) will be invested into building up a bank of data about the
asymptotic behaviours and ‘vanishing cues’. Once these data are precise enough, the task
of determining the spectra of arbitrary potentials of known asymptotic types will become a
question for pocket calculators.
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Appendix. The evaluation of the vanishing cues

Below, we look straightforwardly forf = tana defined by the Riccati equation (3) and
yielding ¢(r) = e/ /@4 which vanish either for — +o0 or ¢ — 0,.

A. Harmonic oscillator
The solution to the Riccati equation
f4 f2=w’?-2E
which yieldsg(r) — 0 for r — +o00, can be found in the form of an infinite series:

+00
f@t) = —wt + Za,fl’

i=0

where
E 1
ap=ay =0 a=_--5
1 s
dgp1= 51 = (= Daga+ ;a,»as_ J (s > 2).
Explicitly

£0) . E 1 1+ 1 /E 1 E 3\1
= —Ww _—— = — —_— _— _—— = —
w 2/t 2w \w w 2/

1 E 1 E 3

_l’_i - -

2w2\w 2/ \w 2

16263

(20 -2)
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The asymptotic form of the%‘—eigenvectors’ for - oo is

g ~ e 20 |G- Den GG G-Da+],
The consistency with the textbook expressions b(:) in terms of the confluent
hypergeometric function is easily verified.
B. The Coulomb potential

The series solution for

. 2 2 l0+1Y
f+f_ l+ [2

—2E

(yielding go(r) — 0 whent — 0,) turns out to be

l+ 1 +00 )
fo = — 4+ a;t'.
4 i=0
Explicitly
f_1+1 1 2E(1+ 1% +1
O T T Ir1l T @43+ 1)2

Henceforth, the%-eigenvector’ vanishing for — 0, is

IR 2E(I+D241 2
go>=t"e F17 2@+3)0+1)2

consistently with the well known expressions in terms of the confluent hypergeometric
series.
Fort — 400, by similar argumentsf has the form

1 1 2(0+1E+/2E[-11
2|E| ¢ 4|E|/2|E] 12

fo=—2|E| +

yielding the %—eigenvector'

g ~ e VALl 7am ghl/n

whereh (&) has the form of an analytic series vanishing at 0. However, we have found

that if the integration interval is wide enough, a simpler asymptotic expression gives good
results:

1 =—\/—2E—§+l(l+l)

12

and the only problem we have is to integrate the angular equation (18) in a sufficiently long
range, to have the cue without nodal points. The integration can be simplified by changing
variables fromz to x = 7/(1+ 1).
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C. The Yukawa potential

This case is very similar to the preceding one, though no longer treatable in terms of
hypergeometric series. The Riccati equation f@r) = tana(¢) reads

. 2 l+1

f+f2=—;e*“+ ( ; ) ok,
Our theorem 3 ensures the existence of the solution of (1) vanishing at zero, of the form
Yo(r) = exp{fo(1)} where

+00
fO = # + altl
i=0
After calculations
-1 20— E)l+ 1% -1
©Trrr T @+ aty

-1 {2(—,\)”1 :
as+1 =

- rs—r 21
24+s+3]| s+ D! X;aa } (s )

Henceforth, the vanishing cug(z) is

1 20-E)i+D2-1 2,
go(t) =~ t'Tre M ey T

(no longer representable in terms of the confluent hypergeometric series!).
Fort — 400, we have used a finite approximant:

J- =\/l(l+1) —2E — %e—*f

12

changing simultaneously the integration variablecte: ¢ /(1 + 7).

D. A hybrid ‘quark potential’

The Riccati equation (3) for the effective potential

1 1 ,, (+1D
V(t)=—;+éwt ~ o0
yields the following fo(¢) for + — 0,:
41 1 2E(1+ 1% +1 2E(+1D%+1
o= T LT @302 T @312
N 1 { 5 4E(l +1)2 42 (2E(1+1)2+1)2}3+m
2+5 2+3)1+D*+2) (2 +32(1+1D*

The vanishing cue
go = tl+le—l%lt+g(t)

whereg(¢) has the form of an analytical series.
Meanwhile, the solution vanishing at> +oc corresponds tgf_(¢) in the form

f_=_wt+|:E_1:|l+ll+l{|:E_l:| |:E_31|_l(]+]_)}1+...‘
w 2|t w2 2w ||lw 2][w 2 3
The vanishing cue is

g~ e‘%“)fzt(g_%)e/‘(l/’)

wherek (&) is an analytic series vanishing &t= 0.
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